If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-1296=0
a = 1; b = 6; c = -1296;
Δ = b2-4ac
Δ = 62-4·1·(-1296)
Δ = 5220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5220}=\sqrt{36*145}=\sqrt{36}*\sqrt{145}=6\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{145}}{2*1}=\frac{-6-6\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{145}}{2*1}=\frac{-6+6\sqrt{145}}{2} $
| Y=3x^2+24x+45 | | (b-20)(2b-5)=0 | | 5x+2x=70x= | | 1/2x+4=72x-1 | | k^2+9k-20=k | | 64z=12+4 | | 4÷g=5 | | 2^(2x+1)=8^(3x) | | 3x2+2x-7=2x=5 | | 4c+6=3c+12 | | (2d-3)(5d-12)=0 | | m/7-17=4 | | 1.5/3=48/x | | 2x-10-5x=12-4x | | 2x−4=6x÷5 | | 2x-10-5x=12 | | 5(2h+)=10h+30 | | 2n2=288 | | 4x=168+15x | | -1.5=x-28/8 | | 20g+26=506 | | 30=810/m | | 6^2+9^2=x^2 | | (10x+5)x=6 | | 8=w+78/29 | | 13m+72=449 | | t/9+98=112 | | 2(3x+8)=7x-26 | | k/5+24=29 | | 3x+8=7x-26 | | 8f+2=74 | | h/5-3=1 |